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Abstract
Narrow clawed crayfish, Pontastacus (Astacus) leptodactylus, represents an ecologically and economically valuable 
freshwater species. Despite the high importance of artificial breeding for conservation purpose and aquaculture 
potential, hatching protocols have not been developed so far in this species. Further, limited knowledge 
exists regarding the artificial egg incubation, the temperature effect on embryonic development, hatching 
synchronization and hatching rate. In the present study we investigated the temperature increase (from 17 oC 
to 22oC) effects in two different embryonic developmental stages of P. leptodactylus. Furthermore, two primer 
pairs for the Fibroblast Growth Factor Receptor 4 (FGFR4) gene cDNA amplification were successfully designed, 
characterising for the first time the FGFR4 gene in P. leptodactylus in relation to different developmental stages and 
temperatures. Apart from the FGFR4 gene, the Na+/K+-ATPase α-subunit expression was also explored. Both the 
FGFR4 and Na+/K+-ATPase α-subunit expression levels were higher in embryos closer to hatching. Egg incubation at 
22oC for seven days led to significant increase of FGFR4 expression in embryos from earlier developmental stages. 
Nevertheless, temperature increase did not affect FGFR4 expression in eggs from latter developmental stages 
and Na+/K+-ATPase α-subunit expression in all developmental stages. Temperature increase represents therefore 
probably a promising strategy for accelerating hatching in freshwater crayfish particularly in early developmental 
stages. Specifically, our results indicate that FGFR4 expression increased in embryonic stages closer to hatching and 
that temperature influences significantly its expression in embryos from earlier developmental stages. Overall, these 
findings can provide a better understanding of artificial egg incubation of P. leptodactylus, and therefore can be 
employed for the effective management of this species, both for economic and biodiversity retention reasons.
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Backround
The narrow-clawed crayfish, Pontastacus (Astacus) lep-
todactylus (Eschscholtz, 1823) represents an ecologically 
and economically valuable freshwater species which is 
distributed in European continent [1, 2]. It is character-
ized by high nutritional value, which leads to high export 
orientation trade [3]. In general, in the global aquaculture 
sector crustaceans cover about 9% of production with a 
continuous annual increase of 10% [4]. Marine shrimp, 
Litopenaeus vannamei dominates the crustacean pro-
duction with 52%, and it is followed by the freshwater 
crayfish Procambarus clarkii with 21% [5]. Regarding P. 
leptodactylus, Turkey used to be the main export-ori-
ented country from 1970 to 1986 until crayfish plague 
epidemics devastated species populations with harvests 
reaching 5.000 tons (in 1984) and then reduced to 200 (in 
1991). However, until 2009 crayfish populations recov-
ered reaching 734 tons, translated in 2.713.494 USA dol-
lars [6]. In Greece, there are no such data, however in 
Lake Polifitou in Northern Greece, crayfish harvest used 
to be the main income for local fishermen [7] before pop-
ulation devastation [8]. Apart from its nutritional value, 
it operates as a scavenger, and therefore it possesses a key 
role towards ecosystem viability [1, 2]. During the last 
few years, the interest regarding the development of a 
sustainable aquaculture protocol is increasing, especially 
in Greece [7]. The urgent need of the development of 
such a protocol is also highlighted by the mass mortalities 
events which were recently reported. More specifically, in 
Vegoritida and Polifitou lakes, a crayfish plague epidemic 
event occurred and devastated local populations dur-
ing the last year [8]. Furthermore, apart from economic 
reasons, biodiversity retention is of main importance 
because native European crayfish species are vulnerable 
towards diseases and their population have faced many 
reductions during the last years [9–12]. The most impor-
tant pathogen that threaten biodiversity is Aphanomyces 
astaci which cause the crafish plague disease with many 
outbreaks reported in Europe [13–21] and more recently 
in Greece as well [8].

One of the first steps for the successful development 
of an aquaculture protocol is the artificial hatching. 
Some progress has been made in many freshwater cray-
fish species towards artificial egg incubation; neverthe-
less, literature existing on this topic for P. leptodactylus 
is scarce. Previous studies which investigated the devel-
opment of artificial hatching protocols mainly focused 
on Procambarus clarkii (Girard, 1852) [22] and Cherax 
quadricarinatus (Von Martens, 1868) [23], whereas other 
studies have been conducted on signal crayfish Paci-
fastacus leniusculus (Dana, 1852) [24, 25], noble crayfish 
Astacus astacus (Linnaeus, 1758) and white-clawed cray-
fish Austropotamobius pallipes (Lereboullet, 1858) [26–
30]. Although during the first efforts, the hatchability 

in artificially incubated eggs was significantly lower in 
comparison with those attached to the maternal pleo-
pods, the progress in incubation methods, as well as dis-
infectants, proposed the feasibility of this scenario in P. 
clarkii [22]. Generally, in the most common disinfectants 
are included formaldehyde and alcohol. Both are useful 
for successfully control the growth of fungi, kill para-
sites inactivate most of bacterial species and viruses, and 
improve hatchability [23, 31–37].

Since, the only available information for P. leptodacty-
lus concerns the development of a disinfection protocol 
for collected eggs [38] and osmoregulation-gene expres-
sion [39], artificial incubation of narrow clawed crayfish 
eggs may provide promising solutions to a plethora of 
limitations concerning the artificial breeding of this spe-
cies. Specifically, the establishment of the optimal condi-
tions during hatching may result in higher survival rates, 
as well as the prevalence of predators and pathogens, e.g. 
Aphanomyces astaci (Schikora, 1906) [30, 40]. Among 
the advantages of artificial incubation technology are also 
less energy, space, and labor demand. Furthermore, the 
successful artificial hatching of healthy crayfish individu-
als will provide a stock for restocking purposes wherever 
is needed towards biodiversity retention.

Among the environmental factors that affect growth 
and development, temperature is pivotal for embry-
onic development, egg hatching and organism growth 
[41]. More precisely, brooding success depends mainly 
on two factors, namely, mean water temperature and 
egg quality [42]. Temperature is considered one of the 
most important factors for regulating hypertrophy and 
hyperplasia in developing embryos [43]. Previous stud-
ies have shown that in embryos which hatch possess-
ing a higher muscle fibers number, a higher growth rate 
regarding the hypertrophic muscle growth pathway is 
observed [44, 45]. Furthermore, there are some indica-
tions that egg incubation temperature can have an impact 
on muscle growth. For instance, heat incubated eggs of 
European sea bass Dicentrarchus labrax (Linnaeus, 1758) 
have resulted to significantly improved somatic muscle 
growth performances [46]. Furthermore, the growth per-
formance may be influenced by incubation temperature 
prior to hatching in several teleost fish, including Atlan-
tic salmon Salmo salar (Linnaeus, 1758) [47–50], halibut 
Hippoglossus hippoglossus (Linnaeus, 1758) [51], haddock 
Melanogrammus aeglefinus (Linnaeus, 1758) [52], pearl-
fish Rutilus meidingeri (Heckel, 1851) [53] and zebrafish 
Danio rerio (F. Hamilton, 1822) [43]. Thus, investiga-
tion of the effect of temperature during P. leptodactylus 
embryo development can provide useful information 
regarding the improvement of growth performance of 
this slow-growing freshwater crayfish species.

The fibroblast growth factors (FGFs) are a family of 
polypeptide growth regulators with a significant role in 
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embryonic development. They can stimulate aberrant 
growth or abnormally affect some aspects of cellular 
behavior and activate signal transduction pathways lead-
ing to diverse biological responses [54, 55]. The function 
of FGFs takes place in coordination with four highly con-
served tyrosine kinase receptors, the fibroblast growth 
factors receptors (FGFR) [56]. Apart from its substantial 
role towards embryonic development, FGFR4 is pro-
posed to regulate crayfish innate immunity by modulat-
ing NF-κB signaling [57]. Moreover, ATPase enzymes 
possess a regulatory function towards transport (uptake) 
of essential ions from aquatic environments. Specifically, 
in several decapod species, Na+/K+-ATPase (as a major 
ion regulator) exhibits a crucial role during the species 
freshwater environments colonization [58–60]. Hyperos-
moregulation functions prior and during hatching, prob-
ably initiating during the embryonic phase, allow these 
organisms to develop entirely in freshwater environments 
[61, 62].

Overall, the aim of the present study was to investigate 
the expression of FGFR and Na+/K+-ATPase genes dur-
ing embryonic development in artificially incubated P. 
leptodactylus eggs in two different temperatures prior to 
hatching. Both of these genes were selected for specific 
reasons:

FGFR:

 	• Possesses a significant role in embryonic 
development.

 	• Stimulates normal growth.
 	• Regulates innate immunity.

Na+/K+-ATPase:

 	• plays a central role in ionoregulation.
 	• contributes in uptake of essential ions.

The FGFR gene was characterized for the first time 
in P. leptodactylus. Since from the above, it is under-
stood that investigation of temperature effect on the 
Na+/K+-ATPase gene expression is of high importance 
(due to its significant role towards osmoregulation), our 
intention was to also suggest initial assumptions regard-
ing the effect of incubation temperature on the growth 
factor and Na+/K+-ATPase α-subunit gene expression of 
P. leptodactylus embryos in earlier and latter develop-
mental stages before hatching.

Materials and methods
Experimental animals and design
Three berried P. leptodactylus females were collected 
from Vegoritida lake, Greece at end of March 2023 when 
the water temperature was 14,5  °C. Individuals were 
acclimated in independent aquaria (90  L, 40  cm long, 

50 cm width, 45 cm height) with continuous aeration sys-
tem to maintain high oxygen levels and constant water 
temperature at 17 ± 0.5 °C. Fifty eggs were removed from 
each crayfish by sliding a pair of forceps across the base 
of the female pleopods from an ovigerous crayfish on 03 
April 2023 and transferred into two disinfected 1 L Erlen-
meyer flasks equipped with aerated pumps and filled 
with distilled water. Each flask was covered with parafilm 
to avoid infection. The temperature at the beginning of 
the experiment was 17oC and the photoperiod was con-
stant 12 h light/12 h dark.

The water was changed every two days and a disin-
fection process was performed and repeated every two 
days with 75% ethanol, as previously proposed [23]. This 
process was repeated until the 8th May 2023, when the 
development of eggs was observed under the stereo-
scope. Dead eggs were carefully removed. The develop-
mental stage was determined as described in Sandeman 
and Sandeman [63]; photos from each developmental 
stage were examined (Fig.  1). No exact synchronization 
regarding egg developmental stage was observed; some 
eggs grew faster. On the 8th May 2023, nine eggs from 
the 45–55% developmental stage (stage 1) and nine from 
the 65–85% developmental stage (stage 2) [63] were 
transferred in disinfected Eppendorf tubes (in groups 
of three) and kept in -80oC until RNA extraction. The 
remaining eggs were separated in four new disinfected 
1  L Erlenmeyer flask. The 2 out of 4 flasks contained 
eggs from stage 2 while the other two eggs from stage (1) 
From those containing the eggs from stage 2, the first was 
kept at 17οC whereas the second one at 22οC. These two 
temperatures were chosen based on previously published 
data, as the optimal temperatures for animal growth and 
increased moulting rate [3, 64–67]. The same experi-
mental design was set for the eggs from stage (2) On the 
16th May 2023 nine eggs from each condition were trans-
ferred in disinfected Eppendorf tubes (in groups of three) 
and kept at -80oC until the RNA extraction (Fig. 1).

RNA extraction and cDNA synthesis
Total RNA from each pool containing three eggs was 
extracted using the NucleoZOL reagent (Macherey-
Nagel, Düren Germany), according to the manufacturer’s 
protocol. From each different developmental stage and 
treatment. 2.2, each egg from a group of three was pestle-
homogenized in 500  µl NucleoZOL, and RNAase-free 
water was added to the lysate. Three technical replicates 
from each stage and treatment were performed (n = 3 
biological replicates, n = 3 technical replicates). In the 
next step, samples were centrifuged, and an iso-propanol 
solution was added for RNA precipitation. Subsequently, 
after another one centrifugation, two ethanol washes of 
the RNA pellet were conducted. Finally, the pellet was 
resuspended in 100 µl nuclease-free water. The RNA after 
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the extraction was stored at -80oC until cDNA synthe-
sis. Prior the reverse transcription (RT), extracted RNA 
was measured on a Quawell UV-Vis 5000 spectropho-
tometer (Quawell Technology, San Jose, CA, USA) for 
the determination of its quantity and quality. cDNA syn-
thesis was performed using the PrimeScript kit (Takara, 
Japan): approximately 500 ng of total RNA of each sample 
was used, with the protocol following the manufacturer 
recommended guidelines. Produced cDNA quality and 
quantity were also determined in a Quawell UV-Vis 5000 
spectrophotometer (Quawell Technology, San Jose, CA, 
USA). cDNA samples were equally diluted and were then 
preserved at -20oC until qPCR amplification.

Primer design for FGFR4 gene characterization
For gene expression analysis of the FGFR4 gene in P. 
leptodactylus, degenerated primer sets were designed 
according to FGFR4 sequences obtained from NCBI of 
other crustaceans. Specifically, the sequences with Gen-
Bank accession numbers ON012066.1, XM_053780322.1 
XM_050877024.1, XM_042383149.1, XM_037929195.1, 
XM_045266162.1, XM_027376153.1, XM_043018380.1 
and ON045327.1 were utilized. The above accession num-
bers correspond to P. clarkii, C. quadricarinatus (Von 
Martens, 1868), Eriocheir sinensis (H. Milne-Edwards, 
1853), Homarus americanus (H. Milne-Edwards, 1853), 
Penaeus monodon (Fabricius, 1798), Portunus trituber-
culatus (Miers, 1876), Penaeus vannamei (Boone, 1931), 

and Penaeus japonicus (Spence Bate, 1888) respectively. 
The sequences were aligned using the MUSCLE algo-
rithm in MEGAX software [68], and the conserved sites 
were targeted for the design of various primer sets using 
the Primer 3 software (Primer3_masker, Tartu, Estonia) 
that were afterwards tested by conventional PCR. Among 
the tested primers, two sets were eventually selected, the 
validity of which was confirmed as described in Sect. 2.4.

Conventional PCR and sequencing
One µl of RT products was utilized as cDNA matrix for 
amplification in conventional PCR using FastGene Taq 
2X Ready Mix (NIPPON Genetics, Duren, Germany) and 
each one of the newly designed primer sets (Table 1) to 
test their validity. After the first denaturing step at 95οC 
for 3 min, 35 cycles of denaturing step for 30 s at 92οC, 
annealing step for 40  s at 50οC, and extension step for 
40  s at 72οC, followed by a final extension step at 72οC 
for 5 min were performed. In each 20 µL PCR reaction, 
0.6 µL of each primer (10 µM), 10 µL FastGene Taq 2X 
Ready Mix (NIPPON Genetics, Duren, Germany) and 1 
µL of cDNA (50 ng/µL) were contained. The volume up 
to 20 µl was filled with ultrapure water. After the ampli-
fication, the PCR products were loaded and run on a 2% 
agarose for 20 min at 100 V. Subsequently, PCR products 
were purified using the commercial NucleoSpin Gel and 
PCR clean up kit (MAcherey-Nagel, Duren, Germany) 
and were bidirectionally sequenced applying the Sanger 

Fig. 1  Experimental set-up graphical description
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methodology. The sequencing results confirmed that the 
amplified products were the correct parts of the targeted 
growth factor.

Phylogeny construction
Using the MEGAX software [68], the results from 
sequencing were aligned using the ClustalW algo-
rithm and a maximum likelihood (ML) phylogenetic 
tree was created including the sequences with GenBank 
accession numbers: ON012066.1, XM_053780322.1 
XM_050877024.1, XM_042383149.1, XM_037929195.1, 
XM_045266162.1, XM_027376153.1, XM_043018380.1 
and ON045327.1. The sequences were trimmed and only 
sequences of the same lengths were included in the anal-
ysis. For ML tree construction with MEGAX, the best-fit 
substitution model (K2 + G) was determined applying the 
Akaike information criterion (AIC). The tree was visual-
ized with MEGAX.

Gene expression analysis
FGFR4, Na+/K+-ATPase α-subunit and actin gene 
expression was evaluated through quantitative real time 
PCR. The comparative CT method (2–ΔΔCT method) as 
described in Livak and Schmittgen [69] was applied to 
quantify the relative expression of the two genes dur-
ing different developmental stages and temperatures of 
P. leptodactylus embryos. The target gene expressions 
were normalized to actin expression. Real-time quanti-
tative PCRs were carried out in a Thermocycler Eco 48 
Real-time PCR (Illumina) instrument using KAPA SYBR® 
FAST qPCR Master Mix. PCR reactions were performed 

in 10 µl final volume, where 10 ng of eggs cDNA as tem-
plate, 5 µl of KAPA SYBR® FAST qPCR Master Mix (2X), 
2 µM of each one of the primers (Table 1) and PCR-grade 
water up to 10 µl were mixed. The thermal profile con-
sisted of an initial step at 95οC for 15 s and 40 cycles of 
denaturing at 95οC for 15  s, annealing at 55οC for 20  s 
and elongation at 72οC for 20  s. Plate read was encom-
passed after the step of 55οC for quantification of the 
amplicons.

Statistical analysis
General linear mixed model and repeated measures 
mixed-model ANOVA (GLM) (independent variables: 
egg developmental stage, temperature and time) as well 
as one-way ANOVA were performed to detect significant 
differences at 5% probability level (SPSS Scientific Inc. 
Software, version 21). Simple linear correlation (Pear-
son’s test) analysis was employed for the estimation of 
significant correlations (at 5% level) between the levels of 
enzymes of antioxidant defense and apoptotic responses 
(GraphPad Instat 3.0).

Results
Description of the developmental stages
The collected eggs were analyzed under the stereoscope 
and separated according to morphological criteria pro-
posed by Sandeman and Sandeman [63] in Cherax 
destructor (Clark, 1936). Stage 1 eggs presented their 
eyes pronounced as laterally grown, separated by devel-
oping rostrum. Their mandibles were flanked by tips of 
antennae and their caudal papilla reached the base of the 
mandibles carapace edge (Fig. 2A). Stage 2 eggs from the 
later developmental stage possessed differentiated basal 
joints of antennae and antennules as well as their neu-
ral tissue within the eye divided into lobe. Their caudal 
papilla was covered by appendages tips of the antennae, 
which reached caudally to the third pair of walking legs 
(Fig.  2B). Apart from the above stages that were sepa-
rated in order to conduct the experiment, embryos from 
90 to 95% developmental stages were observed under 
the stereoscope. In these stages the tips of the chelae 
reached forward to the bases of the eyes and the rostrum 
grew down between the eyes while the appendages were 
observed closely packed together and the embryos occu-
pied almost the whole ventral side of the egg (Fig. 2C).

Phylogeny of the FGFR4 gene segments
The validity of the novel designed primers was evalu-
ated by phylogenetic analysis of the amplified product 
(Fig.  3). Investigation of the phylogeny of the P. lepto-
dactylus FGFR4 genotype was based on the alignment of 
the partial FGFR4 sequences with the corresponding 
segments from other haplotypes belonging to eight spe-
cies within the crustacean subphylum. P. leptodactylus 

Table 1  Primer pairs designed and used for the amplification of 
the genes targeted in P. leptodactylus eggs
Name Target Sequence (5’ --> 3’) Product 

length 
(bp)

Ref-
er-
ence

FGFR4.1 F
FGFR4.1R

FGFR4 5’-​A​T​C​A​T​A​A​A​C​A​A​G​G​A​G​C​T​
G​A​G​T-3’
5’-TCAACACCATTATASCG-
WGT-3’

130 Pres-
ent 
study

FGFR4.3 F
FGFR4.3R

FGFR4 5’-AATGTTCTAGTCAGT-
GARGA-3’
5’-CTCTGGAGCCATC-
CAYTT-3’

128 Pres-
ent 
study

NaKF NaKR Na+/K+ 
-ATPase

5’-​G​G​T​A​T​G​C​G​A​A​G​T​T​C​C​A​
T​T​T-3’
5’-​T​C​T​C​C​A​A​G​A​C​C​T​C​C​C​A​
G​T​T-3’

220 [39]

3NaK10F 
NaK16R

Na+/K+ 
-ATPase

5’-ATGACIGTICICAYAT-
GTGG-3’
5’-GCRTGRTCICCIGTI-
ACCAT-3’

700 [68]

ActF
ActR

Actin 5’-CAAGGCYGGYTTCG-
CYGG-3’
5’-TCCATRTCRT-
CCCAGTTGG-3’

200 [39]
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FGFR4 partial sequence was more closely related to 
the freshwater crayfish sequences P. clarkii. The phylo-
genetic relationships of P. leptodactylus FGFR4 partial 
sequence in comparison with the other species, retrieved 
from GenBank with accession numbers ON012066.1, 
XM_053780322.1 XM_050877024.1, XM_042383149.1, 

XM_037929195.1, XM_045266162.1, XM_027376153.1 
and XM_043018380.1 are depicted in the maximum like-
lihood dendrogram of Fig. 3.

Fig. 2  Pictures of P. leptodactylus different developmental stages in fixed embryos. (A) Developmental stages 45–55%. (B) Developmental stages 65–85%. 
(C) Developmental stages 90–95% (Scale bar: 1 mm). Eyes (red arrows), caudal papilla (green arrows), cheliped (purple arrow), Basal joints of antennae and 
antennules differentiated (blue arrow), mandible (yellow arrow)
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FGFR gene expression
Expression of FGFR mRNA was detected in all examined 
samples. In general, FGFR4.1 and FGFR4.3 amplicons 
revealed an opposite pattern with FGFR4.1 increasing 
with time and temperature, and FGFR4.3 decreasing 
(Fig.  4A and B). Specifically, we observed that after the 
temperature increase in embryos from stage 1, FGFR4.1 
fragment exhibited increased levels of mRNA expres-
sion, while such an increase was not observed for stage 
2 embryos (Fig.  4A). Regarding FGFR4.3 fragment, its 
mRNA expression exhibited decreased levels both over 
time and with increased temperature for stage 2 eggs, 
while stage 1 eggs depicted no significant differences 
(Fig.  4B). In addition, both FGFR4 parts demonstrated 
increased levels of mRNA expression in embryos from 
stage 2 in comparison with those from stage 1, except 
for 16th of May at 22oC where stage 2 eggs revealed no 
difference compared to stage 1 eggs regarding FGFR4.1, 
while FGFR4.3 exhibited lower levels in stage 2 compared 
to stage 1 (Fig. 4A and B).

Na+/K+-ATPase gene expression
Expression of Na+/K+-ATPase α-subunit mRNA was 
detected in all measured samples with both utilized 
primer pairs (Table 1). In general, after the amplification 
of Na+/K+-ATPase α-subunit cDNA using primers NaKF/
NaKR we observed higher expression levels of the gene 
in stage 2 eggs (prior to hatching) in comparison with 
stage 1 eggs (Fig. 5A). On the contrary, after the amplifi-
cation of Na+/K+-ATPase α-subunit cDNA using primers 
NaK10F/Na16KR we observed higher expression levels 
of the gene in stage 2 eggs in comparison to stage 1 only 
before the temperature treatment (Fig. 5B). On the treat-
ments of 16th May, both at 17oC and 22oC, no significant 
differences between the two stages were observed. In 
general, the influence of the water temperature on cDNA 
expression was not significant (Fig. 5A and B).

Contribution of variables to biochemical responses
Table  2 exhibits the overall effect of all variables and 
their interactions. All variables (egg developmental stage, 

Fig. 3  Maximum likelihood dendrogram verifying the validity of the FGFR amplified products. The dendrogram shows the similarity with FGFR gene 
segments of closely related species, to the greatest extent with P. clarkii
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Fig. 5  Quantitative PCR analysis of Na+/K+-ATPase α-subunit mRNA transcripts in P. leptodactylus eggs during 2 different developmental stages [stage 1 
(45–55%) and stage 2 (65–85%)] using the primer pairs NaKF/NaKR and NaK10F/NaK16R in two different time points and two different temperatures prior 
to hatching. Asterisk (*) denotes statistically significant differences (p < 0.05) between stage 1 and stage 2 eggs while lower case letters denote statistically 
significant differences (p < 0.05) between different treatments of the same stage

 

Fig. 4  Quantitative PCR analysis of FGFR4 (parts 1 and 2) mRNA transcripts in P. leptodactylus eggs during 2 different developmental stages [stage 1 (45–
55%) and stage 2 (65–85%)] using the primer pairs FGFR4.1 and FGFR4.3 in two different time points and two different temperatures prior to hatching. 
Asterisk (*) denotes statistically significant differences (p < 0.05) between stage 1 and stage 2 eggs while lower case letters denote statistically significant 
differences (p < 0.05) between different treatments of the same stage
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temperature and time) and interactions between vari-
ables (egg developmental stage × temperature, and egg 
developmental stage × time) were statistically significant.

Discussion
The narrow-clawed crayfish P. leptodactylus apart from 
being a keystone species is a commercially important 
dietary product. However, a decrease in wild popula-
tions is recorded, since the majority of crayfish produc-
tion is coming from natural stocks existing in the wild. 
In combination to overfishing, crayfish plague out-
breaks synergistically act on this deterioration [8]. It has 
been reported in previously published studies that non-
indigenous European crayfish species outnumbered the 
indigenous crayfish species in 2:1 ratio, implying that 
non-indigenous crayfish species can become dominant 
if the proper measurements towards the protection of 
indigenous crayfish will not stay in priority [70]. There-
fore, from the above, it becomes evident that the devel-
opment of an aquaculture protocol for these species will 
be useful towards biodiversity maintenance, as well as, 
towards local economies. This will mainly occur, as by 
developing an artificial cultivation protocol bloodstock 
will be available for further restocking events or for aqua-
culture applications. The first step towards this direction 
is to find the optimal conditions for the artificial hatch-
ing of the species. However, to the best of our knowledge, 
scarce data exist regarding the developmental stages of P. 
leptodactylus embryos. Thus, for the first time in P. lepto-
dactylus we present the description of embryonic devel-
opmental stages, categorized according to Sandeman and 
Sandeman [63].

Based on the transcriptional levels of the FGFR4.1 
gene, it was observed that in the early developmental 
stages the expression was increased with temperature 
increase to 22oC, while in the later developmental stages, 
expression levels increased only with time. On the other 
hand, the transcriptional levels of the FGFR4.3 gene 
decreased both with temperature and time. This unex-
pected result of the different pattern between the two 
different primer sets of the same gene (FGFR4) could 
be explained accordingly: from annotated crustacean 
genomes and from the limited whole genome sequences 

available from other freshwater crayfish species, it can be 
inferred that these organisms possess many large repeti-
tive structures leading to highly challenging assembly and 
annotation [71, 72]. Thus, entire or partial gene dupli-
cation that may have accumulated leading to potential 
mutation in the one of the two parts of the gene cannot 
be excluded, making the expression pattern of this gene 
inconsistent. The present results also demonstrate the 
fact that P. leptodactylus egg hatching was accelerated by 
the temperature increase from 17oC to 22oC; the latter is 
also in general reflected in the FGFR gene expression. In 
line with our results, and in line with the aforementioned 
studies, Jin et al. (2019) proposed 25oC as the optimal 
temperature for embryonic development in the freshwa-
ter crayfish species P. clarkii. Specifically, the hatching 
period was shortened, and the embryonic development 
was accelerated parallel to water temperature increase 
in a suitable range of 17-25oC [73–75]. The results were 
surprising in the study of Jin et al. [73], as the hatching 
period in 25oC was reduced in one fourth (21 days) in 
comparison to 85 days at 17oC. A similar pattern was also 
observed in other crustaceans concerning the influence 
of the water temperature on hatching timing and embry-
onic development [76–81].

Similarly, to the crustaceans, incubation temperature 
seems to influence the timing of teleost fish eggs’ hatch-
ing. Apart from hatching timing, incubation temperature 
is an environmental factor, which affects fish growth and 
muscle fibers composition [29]. Specifically, in the teleost 
fish species Anabas testudineusis (Bloch, 1792), temper-
ature increase to 28oC prior to hatching leads to altera-
tions in the formation of hyperplastic muscle fibers and 
induction of gene expression-related to growth factors 
[82]. In the same species, the incubation temperature of 
28oC resulted to increased hatching rates and reduced 
the number of abnormal and deformed larvae [83]. Ιn the 
Russian sturgeon Acipenser gueldenstaedtii (von Brandt 
& Ratzeburg 1833) the hatching rate was increased in 
correspondence to a temperature increase from 12oC and 
16oC to 20oC [84]. Generally, it has been observed that 
the variability in eggs incubation temperature even in low 
ranges can lead to substantial changes on the develop-
ment of embryonic stages [85–87]. Hence, as proposed 
by Güralp et al. [88], the development and timing of 
embryonic development and hatching apart from closely 
related to temperature, is species specific as well.

Although temperature increase exhibited a significant 
effect on the FGFR gene expression levels, it seemed to 
not significantly influence Na+/K+-ATPase α-subunit 
gene expression levels in the present study. To our knowl-
edge, no literature exists on the effect of temperature on 
the Na+/K+-ATPase function during embryonic develop-
ment in crayfish. However, some data exist regarding fish 
species. Similar to our results, the Na-K pump activity in 

Table 2  Results of General Linear Model (GLM) ANOVA analyses
df Type 

III SS
F p

Egg developmental stage 3 0.402 6.254 0.007*
Temperature 3 0.103 1.766 0.043*
Time 3 0.322 4.525 0.018*
Egg developmental stage x 
Temperature

3 0.186 2.244 0.032*

Egg developmental stage x Time 3 0.355 5.122 0.011*
*Indicates statistically significant effect
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perch Perca fluviatilis (Linnaeus, 1758) and ruffe Gym-
nocephalus cernuus (Linnaeus, 1758) embryos clearly 
shows that the most favorable temperatures for early 
embryonic development are its lower values, while after 
hatching, increased temperature increases the activity of 
this enzyme. However, in roach Rutilus rutilus (Linnaeus, 
1758), the optimum water temperature for early embry-
onic development is in general high, but the latter corre-
sponds to the fact that this species is a more thermophilic 
one compared to perch and ruffe [89]. Therefore, we can 
assume, taking into consideration P. leptodactylus biol-
ogy, that our investigated species is more similar regard-
ing its embryonic development to fish species such as 
perch and ruffe, than to more thermophilic ones. Con-
trary to the non-temperature effect, a 3-fold increase 
was observed in Na+/K+-ATPase α-subunit expression in 
stage 2 eggs compared to stage 1. In line with our results 
Serrano et al. [39] observed a peak in Na+/K+-ATPase 
α-subunit gene expression levels in P. leptodactylus 
embryos prior to hatching. The increasing activation 
and transcription of one of the main ion transporter 
genes toward the end of the embryonic development of 
A. leptodactylus contributes to the acquisition of effi-
cient hyperosmoregulation, which is used at hatch when 
the emerging juvenile faces the sudden osmotic stress 
originating from exposure to freshwater [39, 61]. Unlike 
marine and brackish species larvae, in which the ability 
to osmoregulate generally occurs during the metamor-
phic transition, the freshly hatched crayfish juveniles 
and not the eggs must possess physiological mechanisms 
to cope with the osmotic stress linked to the freshwater 
environment (massive water influx and ion loss) [61]. 
Nevertheless, the present study’s results exhibited that 
the expression pattern wasn’t the same for the second 
primer pair for Na+/K+-ATPase (NaK10F/Na16KR). This 
could be probably attributed to the bigger length of the 
targeted fragment (700 bp) which makes it less appropri-
ate for Na+/K+-ATPase expression studies, in compari-
son with the other fragment occurred from first primer 
pair (NaKF/NaKR), corresponding to 220  bp. How-
ever, it should be underlined that studies dealing with 
Na+/K+-ATPase during the embryonic phase of crusta-
ceans are very scarce and mostly dedicated to marine and 
estuarine decapod species [90].

Conclusions
To conclude, in the present study we designed two 
primer pairs for the FGFR4 gene amplification and 
therefore characterized its expression in P. leptodactylus 
embryos of differential stages for the first time. We par-
tially sequenced FGFR4 gene and assessed the influence 
of the temperature increase towards its expression levels 
during P. leptodactylus embryonic development. From 
the obtained results we observed significant increase 

of FGFR4 in later developmental stages in compari-
son with the earlier ones. Furthermore, an increase in 
water temperature by 5oC (from 17oC to 22oC) increased 
FGFR4 expression mostly in embryos from early devel-
opmental stages, therefore implying P. leptodactylus 
growth rate acceleration leading to hatching. Regarding 
Na+/K+-ATPase gene expression, it generally remained 
unaffected by the temperature increase. Combined 
together, the above-mentioned inferences indicate that 
although the increase in water temperature can increase 
the expression levels of the FGFR gene related to embry-
onic growth, which is also implicated in innate immu-
nity of the crayfish, the Na+/K+-ATPase gene involved 
in osmoregulation remains unaffected. The tempera-
ture increase combined with growth factors expression 
increase represent a promising strategy for hatching 
acceleration and cellular muscle growth increase, espe-
cially in early developmental embryonic stages. There-
fore, this study aimed to investigate whether different 
incubation temperature of eggs prior to hatching can 
stimulate growth-related gene expression in their early 
and late developmental stages. The data produced herein, 
could operate as a first step towards the understanding of 
the water temperature influence in the artificial incuba-
tion of P. leptodactylus eggs and as a result in the devel-
opment of laboratory reproduction and development 
protocols, mainly by influence the hatching and growth 
rate while keep unaffected the osmoregulation processes. 
The development of an artificial hatching protocol can 
contribute to the optimization of an aquaculture proto-
col contributing to biodiversity maintenance and food 
production.
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